Enhanced HMAX model with feedforward feature learning for multiclass categorization

نویسندگان

  • Yinlin Li
  • Wei Wu
  • Bo Zhang
  • Fengfu Li
چکیده

In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stable Biologically Motivated Learning Mechanism for Visual Feature Extraction to Handle Facial Categorization

The brain mechanism of extracting visual features for recognizing various objects has consistently been a controversial issue in computational models of object recognition. To extract visual features, we introduce a new, biologically motivated model for facial categorization, which is an extension of the Hubel and Wiesel simple-to-complex cell hierarchy. To address the synaptic stability versus...

متن کامل

A Biological Model of Object Recognition with Feature Learning

Previous biological models of object recognition in cortex have been evaluated using idealized scenes and have hard-coded features, such as the HMAX model by Riesenhuber and Poggio [10]. Because HMAX uses the same set of features for all object classes, it does not perform well in the task of detecting a target object in clutter. This thesis presents a new model that integrates learning of obje...

متن کامل

Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition

Retinal image of surrounding objects varies tremendously due to the changes in position, size, pose, illumination condition, background context, occlusion, noise, and nonrigid deformations. But despite these huge variations, our visual system is able to invariantly recognize any object in just a fraction of a second. To date, various computational models have been proposed to mimic the hierarch...

متن کامل

Comparing Feature Matching for Object Categorization in Video Surveillance

In this paper we consider an object categorization system using local HMAX features. Two feature matching techniques are compared: the MAX technique, originally proposed in the HMAX framework, and the histogram technique originating from Bag-of-Words literature. We have found that each of these techniques have their own field of operation. The histogram technique clearly outperforms the MAX tec...

متن کامل

Sensitivity based Generalization Error for Supervised Learning Problem with Applications in Model Selection and Feature Selection

Generalization error model provides a theoretical support for a classifier's performance in terms of prediction accuracy. However, existing models give very loose error bounds. This explains why classification systems generally rely on experimental validation for their claims on prediction accuracy. In this talk we will revisit this problem and explore the idea of developing a new generalizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015